Lesson 5: Mathematical Models of Electrical Control System Components

Learning Objectives

After this presentation you will be able to:
> Identify types of subsystems found in control systems.
> List the characteristics of electrical subsystems.
> Write mathematical models for electrical characteristics.
> Solve for steady-state electrical quantities using given mathematical modeling equations.

Component Models

Subsystem types found in controls systems

Electrical	Motors, Solenoids, Transducers, Control Electronics
Mechanical	Control Valves, Gear Boxes, Linkages
Liquid Flow	
Gas Flow	Piping, Tanks, Pumps, Compressors, Filters
Thermal	Heating Elements, Heat Exchangers, Insulation,

Component Models

Systems' behavior defined by component characteristics

Example: electrical components

Component Models

Definition of Electrical Quantities

Electrical Component Models

Resistance

Static resistance (linear) $\mathrm{R}=\frac{\mathrm{e}}{\mathrm{i}} \quad$ Ohm's Law
Dynamic Resistance (non-linear) Depends on the values of e and i.

$$
\mathrm{R}=\frac{\Delta \mathrm{e}}{\Delta \mathrm{i}}=\frac{\mathrm{de}}{\mathrm{di}}
$$

Can estimate dynamic R with slope of tangent line at operating point.

$$
\mathrm{R}=\frac{\Delta \mathrm{e}}{\Delta \mathrm{i}}=\frac{\mathrm{e}_{2}-\mathrm{e}_{1}}{\mathrm{i}_{2}-\mathrm{i}_{1}}
$$

Electrical Component Models

Example 5-I: Non-linear resistance Volt-amp characteristic. Estimate dynamic resistance at the 6 V operating point.

Electrical Component Models

Capacitance

From the definition of Capacitance $C=\frac{\Delta q}{\Delta \mathrm{e}}$

$C \cdot \Delta e=\Delta q$
I is rate of change of flow
Coulombs/sec $=$ Amp

Divide by Δt
$C \cdot\left(\frac{\Delta \mathrm{e}}{\Delta \mathrm{t}}\right)=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}=\mathrm{i}$
Definition of $\mathrm{C} \quad \mathrm{i}=\mathrm{C} \cdot\left(\frac{\mathrm{de}}{\mathrm{dt}}\right)=\mathrm{C} \cdot\left(\frac{\mathrm{dV}}{\mathrm{c}} \mathrm{dt}^{\mathrm{dt}}\right)$
Where: $\quad \mathrm{V}_{\mathrm{c}}=\mathrm{e}=$ voltage across capacitor
C = capacitance in Farads
$\mathrm{i}=$ capacitor current in amps

Electrical Component Models

Example 5-2: Sine voltage with amplitude V_{m} and frequency ω is applied across a capacitor with a value of C Farads. What is the capacitor current?

$$
\begin{gathered}
e(t)=V_{m} \cdot \sin (\omega t) \\
i(t)=C \cdot \frac{d e}{d t} \quad \frac{d}{d t}[\sin (x)]=\cos (x) \\
i(t)=C \cdot \frac{d}{d t}\left[V_{m} \cdot \sin (\omega t)\right] \\
i(t)=C \cdot \omega \cdot V_{m} \cos (\omega t)
\end{gathered}
$$

90 degree lead between current and voltage. Same as with phasors

Electrical Component Models

Example 5-3: Current pulse of 0.1 sec and amplitude of 0.1 mA is applied to a capacitor. It produces a rise in voltage from 0 to 25 V . What is the capacitance?

Use the incremental definition of C and solve for the value

$$
\begin{array}{ll}
\mathrm{i}=\mathrm{C} \cdot\left(\frac{\Delta \mathrm{~V}_{\mathrm{c}}}{\Delta \mathrm{t}}\right) \quad & \begin{array}{l}
\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{c} 2}=25 \mathrm{~V} \\
\mathrm{t}_{1}=0 \mathrm{sec} \quad \mathrm{t}_{2}=0.1 \mathrm{sec} \\
\mathrm{i} \cdot \Delta \mathrm{t}=\mathrm{C} \cdot \Delta \mathrm{~V}_{\mathrm{c}} \\
\mathrm{i}=0.1 \mathrm{~mA}=0.0001 \mathrm{~A}
\end{array} \\
\frac{\mathrm{i} \cdot \Delta \mathrm{t}}{\Delta \mathrm{~V}_{\mathrm{c}}}=\mathrm{C} \quad \begin{array}{l}
\Delta \mathrm{V}_{\mathrm{c}}=25-0 \mathrm{~V}=25 \mathrm{~V} \\
\Delta \mathrm{t}=0.1-0 \mathrm{sec}=0.1 \mathrm{sec} \\
\mathrm{C}=\frac{0.0001 \cdot(0.1)}{25}=4 \times 10^{-7} \mathrm{~F}=0.4 \mu \mathrm{~F} \quad \text { ANS }
\end{array} \\
\end{array}
$$

Electrical Component Models

Inductance

$$
\begin{aligned}
& \mathrm{e}=\mathrm{L} \cdot \frac{\Delta \mathrm{i}}{\Delta \mathrm{t}} \\
& \operatorname{limit}_{\Delta \mathrm{t} \rightarrow 0} \mathrm{~L} \cdot \frac{\Delta \mathrm{i}}{\Delta \mathrm{t}}=\mathrm{L} \cdot \frac{\mathrm{di}}{\mathrm{dt}} \\
& \mathrm{e}=\mathrm{L} \cdot \frac{\mathrm{di}}{\mathrm{dt}}
\end{aligned}
$$

Potential required to make change in current

Dead-time Delay $\quad t_{d}=\frac{D}{V_{p}}$
Where: $\quad D=$ distance (m)
$v_{p}=$ velocity of propagation (m / s)
Use in high frequency transmission lines and satellite communications

Electrical Component Models

Example 5-4: A voltage pulse of amplitude 5 V with a duration of 0.02 seconds is applied across an inductor. This causes a current increase from I amp to 2.1 amp . Find L.

Use the incremental definition of L and solve for the value

$$
\begin{array}{ll}
\mathrm{e}=\mathrm{L} \cdot\left(\frac{\Delta \mathrm{i}}{\Delta \mathrm{t}}\right) & \begin{array}{l}
\mathrm{i}_{1}=\mathrm{I} \mathrm{~A} \quad \mathrm{i}_{2}=2.1 \mathrm{~A} \\
\mathrm{t}
\end{array}=0 \mathrm{sec} \mathrm{t}_{2}=0.02 \mathrm{sec} \\
\mathrm{e} \cdot \Delta \mathrm{t}=\mathrm{L} \cdot \Delta \mathrm{i} & \mathrm{e}=5 \mathrm{~V} \\
\mathrm{e} \cdot \Delta \mathrm{t} \\
\frac{\Delta \mathrm{i}}{}=\mathrm{L} & \Delta \mathrm{i}_{\mathrm{c}}=2.1-1 \mathrm{~A}=1.1 \mathrm{~A} \\
& \Delta \mathrm{t}=0.02-0 \mathrm{sec}=0.02 \mathrm{sec} \\
& \mathrm{~L}=\frac{5 \cdot(0.02)}{1.1}=0.091 \mathrm{H}=91 \mathrm{mH}(\mathrm{~V}-\mathrm{s} / \mathrm{A})
\end{array}
$$

Electrical Delay Examples
 Example 5-5

Electrical delays common in long high frequency transmission lines and satellite communications

$$
\begin{aligned}
\begin{aligned}
& t_{d}=\frac{D}{v_{p}} \\
& \text { Where } v_{p}= \\
& \text { velocity of propagation } \\
& \text { typical values between } \\
& 2-3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& D= \text { distance }(\mathrm{m})
\end{aligned}
\end{aligned}
$$

a.) Find the delay of a 600 m transmission line with $v_{p}=2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
b.) Find the delay of a satellite transmission with a path length of 2000 km and propagation velocity of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Electrical Delay Examples

a.) Find the delay of a 600 m transmission line with

$$
v_{p}=2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& t_{d}=\frac{D}{v_{p}} \\
& D=600 \mathrm{~m} \\
& v_{p}=2.3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
t_{d}=\frac{600 \mathrm{~m}}{2.3 \times 10^{8} \mathrm{~m} / \mathrm{sec}}=2.609 \times 10^{-6} \mathrm{sec}
$$

$\mathrm{t}_{\mathrm{d}}=2.609 \mu \mathrm{~S}$
ANS
b.) Find the delay of a satellite transmission with a path length of 2000 km and propagation velocity of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Convert km to m
$\begin{array}{ll}D=(2000 \mathrm{~km}) \cdot\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=2.0 \times 10^{6} \mathrm{~m} & \mathrm{t}_{\mathrm{d}}=\frac{2.0 \times 10^{6} \mathrm{~m}}{3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}}=6.667 \times 10^{-3} \mathrm{sec} \\ \mathrm{t}_{\mathrm{d}}=\frac{\mathrm{D}}{\mathrm{v}_{\mathrm{p}}} \quad \mathrm{v}_{\mathrm{p}}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec} & \mathrm{t}_{\mathrm{d}}=6.667 \mathrm{mS}\end{array}$

